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Abstract.
Background: Despite the striking efforts in investigating neurobiological factors behind the acquisition of amyloid-� (A),
protein tau (T), and neurodegeneration ([N]) biomarkers, the mechanistic pathways of how AT[N] biomarkers spreading
throughout the brain remain elusive.
Objective: To disentangle the massive heterogeneities in Alzheimer’s disease (AD) progressions and identify vulnera-
ble/critical brain regions to AD pathology.
Methods: In this work, we characterized the interaction of AT[N] biomarkers and their propagation across brain networks
using a novel bistable reaction-diffusion model, which allows us to establish a new systems biology underpinning of AD
progression. We applied our model to large-scale longitudinal neuroimages from the ADNI database and studied the systematic
vulnerability and criticality of brains.
Results: Our model yields long term prediction that is statistically significant linear correlated with temporal imaging data,
produces clinically consistent risk prediction, and captures the Braak-like spreading pattern of AT[N] biomarkers in AD
development.
Conclusions: Our major findings include (i) tau is a stronger indicator of regional risk compared to amyloid, (ii) temporal
lobe exhibits higher vulnerability to AD-related pathologies, (iii) proposed critical brain regions outperform hub nodes in
transmitting disease factors across the brain, and (iv) comparing the spread of neuropathological burdens caused by amyloid-�
and tau diffusions, disruption of metabolic balance is the most determinant factor contributing to the initiation and progression
of AD.
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INTRODUCTION

Alzheimer’s disease (AD), a progressive neu-
rological disorder, is documented by postmortem
examination or by biomarkers in vivo, according
to the National Institute of Aging and Alzheimer’s
Association (NIA-AA) [1]. The biomarker frame-
work proposed by NIA-AA for clinical diagnosis
includes: (i) extracellular plaques consisting of
amyloid-� (A�, referred to as A biomarker) [2–4];
(ii) intracellular neurofibrillary tangles (NFT) that
are the intraneuronal aggregation of hyperphospho-
rylated tau protein (referred to as T biomarker) [5,
6]; and (iii) neurodegeneration (referred to as [N]
biomarker) that is characterized by neuronal loss and
exhibits metabolic, structural, and functional defi-
ciency [7].

According to the amyloid hypothesis, A� triggers a
series of downstream pathological responses, includ-
ing inflammatory responses, hyperphosphorylation
of tau protein, and AD progression [8, 9]. Tau protein
helps to stabilize microtubules, but when hyperphos-
phorylated, it disassembles from axons, aggregates
into NFTs, blocks neuron-to-neuron transportation,
and consequently leads to the loss of synaptic func-
tions and neurons [5, 6]. The toxicities of pathological
amyloid and tau lead to malfunctioning neurons,
which further induces neurodegeneration, the molec-
ular manifestation of brain atrophy or malfunctioning
neurons in both normal aging brains and neurodegen-
erative diseases including AD [5, 7, 10].

Recently, both clinical and computational find-
ings support the trending mechanistic hypothesis that
the spread of AT[N] biomarkers exhibits a specific
temporal and diffusive pattern [11–13]. Increasing
attention has been paid to the spatial and tempo-
ral correlation between tau depositions and neuron
losses. Some researchers favor the tau hypothesis [5,
6, 14] over the amyloid hypothesis [15, 16] as amy-
loid is poorly matched to the spatial distribution and
temporal evolution of neuron loss. Yet, the abnor-
mal transformation of tau is shown to be mediated by
A� [17, 18]. Moreover, several studies emphasize the
necessity of both A� and tau in AD development by
showing that tau does not lead to AD in the absence of
amyloid accumulation [9, 10]. In this context, it is cru-
cial to study the interaction between amyloid and tau
and their dynamic impact on the pathophysiological
mechanism of AD.

The recent advance in neuroimaging techniques
offers a window to measure the pathological burden
and structural atrophy in vivo along with the progres-

sion of AD. Currently, most neuroimaging studies
utilize association-based approaches to understand
the neurobiology risk factors behind AD progres-
sion. Particularly, consistent efforts have been made
in deep learning fields to better predict AD pro-
gression. In 2016, Hosseini-Asl et al. used a deep
3D convolutional neural network to learn features
from magnetic resonance imaging (MRI) data and
to differentiate between AD patients and healthy
controls [19]. In another study by Zhao et al., a
graph convolutional network was used to analyze
brain connectivity data and identify changes in the
brain’s structural network associated with AD [20].
Recently, Luo et al. (2021) utilized a variational
autoencoder to learn features from multimodal neu-
roimaging data and predict the progression of AD.
These studies achieved high accuracy in differentiat-
ing AD patients from healthy controls and identified
several brain regions that were strongly associated
with disease progression. However, even with intri-
cate and convoluted models, more training data and
rounds of validations/testing are needed before we
could possibly integrate them into clinical practice
due to the black-box nature of machine learning
approaches. The lack of a system-level understand-
ing could potentially lead to findings that are distinct
from essential physiopathological mechanisms. In
this regard, the pioneering network-diffusion model
[11, 21] was used to predict longitudinal atrophy
patterns from MRI images. The recent epidemic
spread model [18, 22] investigated the spread of
amyloid and tau on structural and functional net-
works. However, those models only describe the
diffusion process of disease factors while ignoring
the fundamental interactive pathways between AT[N]
biomarkers. Although tremendous efforts have been
made to model complex biological systems, most
AD-related systems biology approaches are limited to
studying a single pathological pathway or a small part
of the brain, lacking the whole-brain insight gained
from the large-scale longitudinal neuroimaging data
[23, 24].

This work aims to understand the pathophysi-
ological mechanism of AD by probing into the
spatiotemporal dynamics of AT[N] biomarkers on the
whole-brain scale. We conceptualize that AD-related
biomarkers not only interactively contribute to the
neurodegenerative process at each brain region but
also influence the connected regions in a prion-like
manner. To this end, we deploy a network-guided
bistable model to characterize the AT[N] cascade
interactions and diffusion patterns (Fig. 1B). The lon-
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Fig. 1. Overview. A) Methodological process. Input: Amyloid-, Tau-, FDG-PET, DWI scans, and cognitive reserve proxy are processed
and used as indicators of regional AT[N] biomarker level, network connectivity, and neuropathological resistance, respectively. AT[N]
Model: our reaction-diffusion model is built on the AT[N] cascade mechanism and characterizes bistable states (low-, high-risk states) of
the system. Output: the last scans of regional neurodegeneration levels of each subject are classified into low/high states using the optimal
cutoff value found from receiver operating characteristic analysis by maximizing the sum of sensitivity and specificity, which are then used
to train the model parameters. The model outputs long-term prediction risk trained, represented as a surface rendering of regional low/high
risks and identifies brain regions that are (1) vulnerable to pathologic burden and (2) critical in transmitting biomarkers across the brain.
B) Bistable reaction-diffusion model. The backbone of our proposed model is built on the interactive pathways and neuronal prion-like
propagation hypothesis of AT[N] biomarkers: amyloid-� activates the hyperphosphorylation of tau protein, and the abnormal tau triggers
neurodegeneration which then leads to AD; both amyloid and tau spread across the brain network in a prion-like manner. See Materials and
Methods section for detailed descriptions of mechanistic pathways.

gitudinal neuroimaging data is used as the benchmark
to evaluate the predicted evolutionary trajectory,
including (i) regional AT[N] biomarker concentration
levels extracted from PET scans and (ii) structural
brain networks constructed from T1-weighted MRI
and diffusion-weighted imaging (DWI) scans (see
the Input in Fig. 1A). We also include the cogni-
tive reserve proxy [25] to model the resistance to
neuropathology burden. The model converges to two

stable steady states (shown in the cyan dash box
of Fig. 1A): the low-energy cognitive normal state
(low-risk state, LRS) and the high-energy AD state
(high-risk state, HRS), which lays the cornerstone for
prediction risk, a key indicator of AD likelihood.

Model outcomes present an overall strong linear
correlation between prognostic and diagnostic results
(see the Output in Fig. 1A) and capture the Braak-like
spread pattern of AT[N] biomarkers in AD devel-
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opment. Furthermore, based on system behaviors
manifested in the reaction-diffusion model, we are
able to identify brain regions that suffer great vul-
nerability to the abnormal AT[N] burdens, as well
as to nominate a collection of nodes that reveal criti-
cal importance to pathological progression across the
brain under complex neuropathological events. By
providing mathematical insights into the mechanism
of AD and its spreading pattern, our model could
assist the development of new therapies to slow or
halt disease progression.

MATERIALS AND METHODS

Participants

All data used in this study were leveraged
from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. In total, 1,616 subjects from ADNI
passed our quality control after image processing
and parcellation. Among them, 320 participants were
selected to train the model based on three criteria:
(i) have Amyloid-PET, Tau-PET, FDG-PET, T1-
weighted MRI, and DWI scans; (ii) have at least one
follow-up PET scan of A, T, or [N]; (iii) have a clini-
cal diagnostic label (cognitive normal or AD) for each
PET scan. Note that FDG data (a measure of tissue
glucose metabolism) is used as a reversed indicator
of neurodegeneration. Region-to-region connectiv-
ity strength, measured by the count of white matter
fibers, is also utilized to characterize brain network
diffusion.

Data processing

PET data
Each PET scan (Amyloid-PET, Tau-PET, FDG-

PET) was aligned with their own subject’s T1-
weighted MR image. For each brain region, we
calculate its standardized uptake value ratio (SUVR)
to represent the pathological burden at each cortical
region. We divide the tracer uptake in the region of
interest (ROI) by the uptake in the whole gray matter
volume, which has relatively low tracer accumula-
tion and is considered to be unaffected by the disease
being studied. This normalization helps to account for
variations in tracer administration and other factors
and allows for comparison of tracer uptake across dif-
ferent individuals and studies. In order to make the
SURV measurement more robust, we use the boot-
strapping procedure to adaptively sample the point
and calculate the region-wise average of SUVR [26].

Brain network construction
Using the software of FreeSurfer v5.6 [27], all MRI

data were processed through four steps: (i) skull strip-
ping; (ii) tissue segmentation into white matter, gray
matter, and cerebrospinal fluid; (iii) cortical surface
reconstruction based on tissue segmentation map; and
(iv) cortical surface parcellation into 148 regions of
Destrieux atlas [28] using deformable image reg-
istration. We then aligned the DWI images to the
corresponding T1-weighted MR image for each sub-
ject. Following the parcellation of cortical surface, we
applied surface seed-based probabilistic fiber trac-
tography in FreeSurfer v6.4.0.5 with “probtrackx”
and “bedpost”. Thus, each element in the struc-
tural network is essentially the fiber count, where
the total number of fiber counts varies from subject
to subject. Considering such individual differences,
we normalize the connectivity matrix such that the
connectivity degree is invariant to individual brains.
Since it is more interpretable to understand the con-
nectivity degree associated with each brain region
as a probability, we apply row-wise normalization
instead of whole brain normalization. Given the nor-
malized connectivity matrix W, we further make it
symmetric by W = 1

2

(
W + WT)

. Thus, we calcu-
late the Laplacian matrix byL = D − W, where D is
a diagonal matrix of node-wise connectivity degree.

Resilience proxy
In this work, we calculated population-wise esti-

mated resilience proxy, the ability of an individual
to resist the cognitive decline associated with AD.
This estimation is based on a mathematical model
using subjects’ demographic data, socioeconomic
factors, cerebrospinal fluid (CSF) tau/A� ratio, and
AD-related polygenetic risk scores, which we found
this interaction term manifests the role in counter-
acting the progression of AD in our statistical model
[25].

Reaction-diffusion model

Our proposed network-guided biochemical model
consists of a classic bistable model and network dif-
fusion. This relatively simple model enabled us to
investigate the spatiotemporal dynamics of AT[N]
biomarkers in AD by capturing the essence of the
underlying mechanism of complex biological phe-
nomena. In Fig. 1B, there are five major entities in our
model: (i) A biomarker (written as xA), representing
the A� protein, can be measured from Amyloid-PET
[29, 30]. (ii) T biomarker (written as xT ), represent-
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ing the tau protein, can be measured from Tau-PET
[31]. (iii) [N] biomarker (written as xN ), measured
from MRI or FDG PET, is an indicator of neuronal
injury which is simplified as the damage caused by A
and T biomarkers [32–34]. xA, xT , and xN are three
column vectors assembling the observed degree of
AT[N] biomarkers at each region. xA, xT , and xN

are three column vectors assembling the observed
degree of AT[N] biomarkers at each region. (iv) A
148 × 148 structural brain network matrix to rep-
resent the normalized region-to-region connectivity
strength (written as Laplacian matrix L). In the diag-
onal of matrix, we subtract the total connectivity
degree of each region to reflect the inward and out-
ward spreading of pathological burden throughout the
brain network. (v) A 148 × 1 vector r representing
the population-wise averaged, regional specific cog-
nitive reserves proxy which mediates and even delays
the neurodegeneration process.

The pathological framework is an integration of
AT[N] reactions and network diffusion including five
main pieces:

1. Constant production of A and T (①, ③);
2. Density-based degradation/clearance of A and

T (②, ④);
3. Regional network resilience to counteract the

neurodegeneration(⑤);
4. Non-linear cascade activations: amyloid accel-

erates the accumulation of pathologic tau (A →
T), which then activates neurodegeneration pro-
cess (T → N) and in turn amyloid deposition
through positive feedback pathway (N → A)
(⑥, ⑦, ⑧);

5. Prion-like diffusion of A and T on the structural
brain network (⑨, ⑩).

At each brain region, the production (①, ③) and
clearance (②, ④) of amyloid and tau proteins are
included in the model following zero-order and first-
order mass-action kinetics, respectively. We also
include the cognitive reserve proxy [25] to model the
individual’s network resilience (in terms of the mod-
erated ratio of neuron loss), denoted as the inhibition
pathway (⑤). The interaction of AT[N] biomarkers
follows the dominant amyloid cascade hypothesis
[35, 36] and is denoted as activation pathways (⑥,
⑦). The phenomena of damaged neurons stimulating
amyloid production via reactive astrocytes [37] are
represented by the positive feedback pathway (⑧).
The classic Hill function [38, 39] is applied to approx-
imate the multi-molecular interacting process in the
activation and feedback pathways as nonlinear reac-

tions. The part of AT[N] reactions constitutes a classic
bistable model. Finally, the diffusion of amyloid and
tau proteins along the white matter fiber pathways in
the structural brain (⑨, ⑩) is modeled using the graph
equivalent Laplacian matrix L as the diffusion oper-
ator on the brain network, where L characterizes the
dynamic balance of influx and outflux of neuropatho-
logical burdens at each node. The diagram in Fig. 1B
can be converted into three sets of PDEs (Equation
1), which model the spatiotemporal dynamics for A,
T, and [N] biomarkers, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂xA

∂t
= kpA − kdAxA + kNA

(xN )α

kα
MN + (xN )α

+ dALxA

① ② ⑧ ⑨

∂xT

∂t
= kpT − kdT xT + kAT

(xA)β

K
β

MA + (xA)β
+ dTLxT

③ ④ ⑥ ⑩

∂xN

∂t
= −kγr · xN + kTN

(xT )γ

K
γ

MT + (xT )γ

⑤ ⑦
(1)

We use hyperparameter � to denote model
parameters that are necessary to characterize the
rate constants of production (kpA, kpT ), clear-
ance (kdA, kdT ), activation and positive feedback
(kNA, kAT , kTN ), inhibition (kr), diffusion (dA, dT ),
dissociation (kMA, kMT , kMN ), and the coefficients
in Hill function (α, β, γ). Our PDE-based model can
be used to predict the evolution of AT[N] biomarkers
given the baseline biomarkers, and understand the
complex physiopathological mechanism of AD by
analyzing the system behaviors as described next.

System stability analysis

By solving the characteristic equations of our
PDEs, we can find the equilibria of our model,
which captures a nonlinear dynamical system on a
continuous-time domain. Lyapunov’s stable theory
[40] is applied to further analyze the local stability
of the detected equilibria. The equilibrium found is
stable if and only if the real part of the solution to the
characteristic equations or eigenvalue of the Jacobian
matrix are all negative. Our bistable system gener-
ates two stable equilibria, mirroring the diagnosis of
AD: the small equilibrium represents the low-risk
state with low accumulation of AT[N] biomarkers,
and the high-risk state with high biomarker levels.
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The characterization of stability analysis allows us
to predict the spatiotemporal evolution of AT[N]
biomarkers and investigate vulnerable structures in
the brain where a subtle disturbance would signifi-
cantly influence the dynamics of other regions.

Parameter optimization

The receiver operating characteristic (ROC) anal-
ysis was used to facilitate the classification of disease
status using biomarker SUVR values as the correla-
tion between cognition and biomarker is not collinear
[41, 42]. Subjects were first divided into two groups
based on their clinical labels: the low-energy cog-
nitive normal (CN) state (including CN, SMC, and
EMCI diagnostic labels) and the high-energy AD
state (including LMCI and AD diagnostic labels).
An optimal cutoff value was found for each brain
region by maximizing the sum of sensitivity and
specificity. The optimal cutoff values we found for
each biomarker then served as a threshold to classify
individuals’ regional SUVR value into either positive
(+) or negative (–) states. We use AT[N]’s respec-
tive positivity as an optimization objective to achieve
data-driven classification, aiding in long term predic-
tion. The median accuracies are 74.06%, 73.75%, and
62.97% for A, T, and [N] biomarkers, respectively.
The median sensitivity and specificity are 64.81%
and 78.54% (A), 51.85% and 85.85% (T), 58.33%
and 65.57% (N) with a median area under the curve
value of 0.7599 (A), 0.7139 (T), and 0.6387 (N).

In the simulation, all neuroimaging data were
scaled into [0,1] to represent the relative regional
concentration of AT[N] biomarkers. The model takes
the regional AT[N] biomarkers as input and outputs
the estimated risk for every ROI [28]. The bistable
attribute of our model enables it to generate simula-
tion results: each brain region evolves into either a
low-risk state or a high-risk state, where LRS indi-
cates regions predicted to remain healthy and HRS
indicates regions predicted to accumulate abnormal
AT[N] burden and develop into AD lesions. The aver-
age of LRS and HRS are considered as the “prediction
risk” discussed in our model. Three different algo-
rithms (Genetic Algorithm [43], Bayesian Algorithm
[44], and Direct Search [45]) were tested to optimize
the hyperparameter �. While all three optimization
algorithms return comparable results, GA has a faster
convergence rate and returns a slightly smaller dif-
ference between the neuroimage classification and
simulation results.

Statistical analysis

All statistical analyses were performed using R.
Pearson correlation coefficient was calculated to mea-
sure the degree of linear correlation between two
sets of data. Two-tailed student’s t-tests were used
to test the significance of correlation coefficients.
Two-tailed Student’s t-tests were used for single
comparisons between two sets of data. Statistical sig-
nificance was concluded with p-value ≤0.005. 95%
confidence level is used for confidence intervals.
Results in tables are presented as mean ± standard
error of the mean.

RESULTS

Subject information

Among all processed subjects’ data, we selected
320 subjects spanning the AD spectrum, where
selected subjects have longitudinal neuroimaging
scans of Amyloid-, Tau-, FDG-PET, and DWI. Based
on their diagnostic labels, 241 subjects are cate-
gorized into CN group and 79 subjects labeled as
LMCI or AD were grouped into AD group. Since
the correlation between cognition and biomarker is
not collinear [41, 42], we adjust the diagnostic label
by taking biomarker’s positivity into consideration in
result analysis. We used 1.5 interquartile rule (IQR) to
identify outliers in Amyloid-, Tau-, and FDG-SUVR,
and adjusted the label as AD/CN accordingly: high
outliers in CN group are adjusted to AD state, and
low outliers with AD diagnosis are adjusted to CN
state. The labels now take both clinical symptoms and
biomarkers positivity into account. See the Materials
and Methods section for sample selection criteria and
imaging processing specifications.

System stability

Since a high reaction rate usually indicates a rapid
disease progression, it is fundamental to investigate
when the disease will evolve into a stable stage
(remains in CN or AD), which can be characterized
by the system time it takes to reach equilibria (steady
state) from the initial condition. Like the previous set-
ting, we track the stability time under different rate
constants of production, clearance, activation, diffu-
sion, and resilience for amyloid and tau. Compared
to amyloid, tau presents more variations in stabil-
ity time when the production rate is tuned up by
50% (Fig. 2A), and the clearance rate is down by
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Fig. 2. Influence of amyloid and tau production, clearance, activation, and diffusion rates on stability time. A–C, E–G) Boxplots of stability
time with varied rate constants of production, clearance, diffusion, activation, and resilience. The x-axis represents the relative increase (+)
or decrease (–) of rate constants. +0% is the base reaction rate used in the model. The y-axis represents the time that the system takes to
reach a stable state. D) Linear regression fitting of connectivity strength over stability time (the time to reach system equilibrium) for each
diagnostic group. H) Bootstrap distribution of relaxation time (inverse of the second eigenvalue of Laplacian matrix, or convergence speed
to system equilibrium) for CN and AD groups.

20% (Fig. 2B). We also observe a positive associ-
ation between tau activation rate and stability time
(Fig. 2E), illustrating the vital role of tau hyper-
phosphorylation in AD progression. The resilience
rate shares the same trend with the clearance rate
but poses significantly more influence on stability
time (Fig. 2F). Increasing resilience significantly
decreases the time needed to reach a stable state.
This result, together with the discussion on predicted
risk, implies the importance of non-biological fac-
tors, such as education and social interaction, play
an important role in slowing AD progression [25, 46,
47].

Diffusions of amyloid and tau do not change the
characteristic time of system stability

Diffusion rates of both amyloid and tau are the
least influential parameters on stability time, which
implies alterations in structural brain networks are not
the key driving force of AD progression despite the
diffusive nature of AT biomarkers (Fig. 2C, G). We
further examine the influence of structural networks
on disease progression. Although some outliers affect
the fitting performance, we observe positive asso-
ciations between connectivity strength and stability
time (the system time it takes to reach a steady state
from the initial condition) across both CN and AD
groups in Fig. 2D, which means nodes with lower
connectivity strength tend to reach stable states faster.
The dynamics of network diffusion alone can also be

characterized by the second eigenvalue of the graph
Laplacian matrix, denoted as �2, which dominates the
convergence speed to steady state or system equilib-
rium. Figure 2H displays the bootstrap distribution
of “relaxation time” (1/�2), an essential measure-
ment of the time scale for a system to return to its
steady state after a perturbation. We could see a clear
stratification between the relaxation time for CN and
AD groups. A larger relaxation time (as seen with the
AD group) indicates a longer diffusion process and
therefore may lead to longer-lasting damage due to
increased duration of amyloid or tau presence.

Braak-like spread pattern

Inspired by a wealth of preclinical in vivo and in
vitro research in the past decade that suggests amyloid
and tau proliferation in the brain follows a prion-like
pattern transmitting between neurons [21, 48, 49],
we use this general spread pattern to examine the
validity of our model. Amyloid and tau progression
were divided into three stages (Stages Early, Mid-
dle, Late) based on prevailing amyloid staging [50,
51] and tau staging [52, 53]. In the early stage of
tau as shown in Fig. 3H, the mild affection of NFT
and neuropil threads are confined to the entorhinal
cortex. Adjacent limbic areas including amygdala
and para-hippocampal cortex and temporal cortices
are impacted by NFT and neuropil threads at middle
stage. At the late stage, all part of the hippocampal
formation is attacked and NFT with long extension
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Fig. 3. Spread pattern of amyloid and tau in our model and Braak stages. A, E) Initial onset of abnormal amyloid (red) and tau (green). B, F)
Progressive pattern of AT at the middle stage of simulation. C, G) Final pattern of AT accumulation across the brain at the end of simulation,
when the system arrives at the stable state. D, H) Prion-like transmitting pattern between neurons of AT proposed by Braak. The dark to
light spectrum of red/green represents early, middle, and late stages of amyloid/tau Braak stage.

reaches the outer part of the iso-cortex, and finally
reaches primary cortex areas (precentral gyrus). The
progression of amyloid falls into a relatively reversed
pattern compared with tau (see Fig. 3D). In the early
stage of amyloid progression, amyloid hits regions
including precuneus, medial orbitofrontal cortices,
and posterior cingulate, and then spreads out into
almost all iso-cortical associated regions in the mid-
dle stage. The late stage is characterized by loads of
amyloid in lingual, sensorimotor, and nearby regions.

As we can see from Fig. 3A–C, amyloid first
deposits over fronto-medial and temporo-basal areas
and disperses into the adjacent iso-cortex. Amyloid
then severely affects the remaining associative neo-
cortex. It arrives at the striatum at the final stage,
leaving the entire brain affected. For amyloid, our
model successfully classifies 68 regions as middle
stage and all regions in late Braak stage, while mis-
classified 10 regions in middle stages to late stage and
misclassified 14 regions as CN state, which achieves
83.8% accuracy. We correctly predicted some well-
documented neocortical regions such as precentral
gyrus, precuneus, etc. Figure 3E–G has revealed a
similar spread pattern as Braak staging of tau. Tau
first spreads from entorhinal and trans-entorhinal
regions to para-hippocampal, fusiform, amygdala,
and related regions. From there, tau accumulates
across the entire iso-cortex and brain. For tau, our
model successfully classifies all regions in middle
Braak stage, 78 regions as late stage, and leaves 28

regions in low energy state, which achieves 81.1%
accuracy. Our model successfully captures the stage
of important regions such as entorhinal cortex, angu-
lar gyrus, and inferior temporal lobe.

Model performance

Overall model outcomes will be evaluated with
AT[N] biomarkers and clinical cognitive assessment
from different aspects and significant associations
are found between them, demonstrating our models’
potential to uncover the heterogeneous progressive
pattern of AD. We will examine individual predicted
risk (proportion of high-risk state for each subject
across the entire brain (148 nodes)) and regional pre-
dicted risk (proportion of high-risk state for each
brain region across all subjects).

Regional tau and neurodegeneration are stronger
indicators of regional AD risks

In Fig. 4A–C, as we averaged our patients’ data,
this last scan data presented the severity of each
biomarker on all levels of patients. We observed
severe amyloid burden in the inferior temporal
gyrus, superior temporal sulcus, as well as cingu-
late gyrus and precuneus (Fig. 4A). Minimal amyloid
deposition in inferior frontal gyrus. For tau, high
concentrations of tau from patients were detected in
the temporal gyrus, and low concentrations of tau
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Fig. 4. Model performance in prediction risk. A–C) Surface rendering of beta-amyloid, pathologic tau, and neurodegeneration averaged over
all 320 subjects in axial and sagittal views. The color spectrum ranges from red (high concentration) to blue (low concentration). D) Surface
rendering of prediction risk averaged over all 320 subjects in axial and sagittal views. The color spectrum ranges from red (high risk) to blue
(low risk). E) Individual predicted risk versus cognitive assessments (MMSE, CDR, and ADAS), with colors and shapes indicating adjusted
labels.

were observed in paracentral lobule (Fig. 4B). For
neurodegeneration biomarkers, severe levels of neu-
rodegeneration encompass the temporal gyrus and
nearby regions, and fewer neurodegenerations were
observed in posterior-dorsal part of the cingulate
gyrus (Fig. 4C). Figure 4D was based on the predicted
risks generated by our model, which is an indica-
tor of the severity of AD biomarkers’ progression.
Extreme levels of predicted risk appear to depose at
inferior temporal gyrus and middle temporal gyrus,
and low predicted risk regions are posterior-dorsal
part of the cingulate gyrus as well as inferior frontal
gyrus. These results align well with the current under-
standing that tau and neurodegeneration are more
closely related to AD progression in space and time
[54, 55].

Our predicted risk accords with averaged AT[N]
patterns with an apparent increase of prediction risk
in the middle and inferior temporal gyrus from the
sagittal view of the brain, demonstrating the vulner-
ability of the temporal lobe and the indicative sign in
early AD diagnosis [11, 56]. We further measure the
validity of our model using clinical cognitive assess-
ments (Fig. 4E). Our prediction risks are found to
be linearly associated with Mini-Mental State Exam
(MMSE) scores (r2 = 0.17, 95%CI = [0.10, 0.24]),
Clinical Dementia Rating (CDR) scores (r2 = 0.18,

95%CI = [0.11, 0.25]), and Alzheimer’s Disease
Assessment Scale (ADAS) (r2 = 0.23, 95%CI =
[0.15, 0.31]), as shown in Fig. 4E.

Amyloid and tau progression patterns affect
model prediction

Our primary model performance presents a strong
linear relationship between AT[N] neuroimaging
examinations and cognitive tests. Here we investigate
our model results by examining the predictive error.
By fitting the least square linear regression model of
regional neurodegeneration [N] over average regional
risk, ROIs are then classified as (i) fitted prediction if
the observed [N] lies within the 99.9% confidence
interval (CI) of predictions, (ii) overestimations if
the observation lies below the CI of predictions, (iii)
underestimations if the observation lies above the CI
(Fig. 5A). A similar pattern is detected across AT[N]
biomarkers when we compare the surface rendering
of neurodegeneration (Fig. 5E) with the average level
of amyloid and tau over 320 subjects (Fig. 5B, F). Our
model tends to overestimate the risk of AD for regions
with high A and T profiles (red regions in Fig. 5B,
F) and underestimate the risk of AD at regions with
low A and T profiles (cyan color regions). Figure 5C
and G show the significant difference between AT
levels in overestimated group and underestimated
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Fig. 5. Amyloid and tau explain regional model under- and over-estimation. A) Predicted risk veresus observed [N] biomarker (last scans
averaged over subjects). Brain nodes are classified as overestimated or underestimated according to the sign of model residual. E) Surface
rendering of under/overestimated neurodegeneration. B, F) Amyloid and tau deposition pattern averaged over subjects’ last scans, with red
representing a high level and blue representing a low level using the optimal cutoff value. C, G) Boxplots of regional amyloid and tau level in
under/overestimated groups. D, H) Correlations between regional model residual and biomarkers tau and amyloid. Negative model residuals
indicate model overestimations, while positive model residuals indicate model underestimations.

group, which confirms that overestimated regions
have higher amyloid and tau burden than underes-
timated areas. The model residual shows a negative
correlation with observed amyloid (r2 = 0.11) and
tau deposition (r2 = 0.32), implying that the aberrant
regional amyloid and tau deposition affects the model
accuracy in AD risk evaluation (Fig. 5D, H).

Vulnerable regions in AT[N] pathological
progression

Studies have shown that AT[N] biomarkers tend
to affect different areas of the brain. We summa-
rized brain regions that are frequently reported as
being affected in literature for A, T, and [N] biomark-
ers, respectively [57–64]. In general, higher levels
of amyloid deposition were found in the anterior
cingulate, frontal cortex, lateral temporal cortex,
parietal cortex, precuneus, and anterior ventral stria-
tum in participants with mild cognitive impairment
(MCI) compared with normal control [57, 61, 64].
Regional Tau-PET levels revealed that tau affected
trans-entorhinal cortex, entorhinal cortex, and medial
temporal limbic system heavily except for the hip-
pocampus [59, 61, 63]. Regions with the drastic
decline in cortical thickness ([N]) exhibit in the
left anterior cingulate, dorsolateral prefrontal cortex,

orbitofrontal cortex, visual association cortex, and
medial temporal lobe, outlining para-hippocampal
gyrus [58, 60, 62]. See the Supplementary Material
for more detailed descriptions and the brain mapping
of summarized regions.

Temporal and occipital lobes suffer vulnerability
to pathological AD progression

To unveil brain regions vulnerable to abnormal
AT[N] burdens, we perform an extensive simula-
tion of random abnormal onset on the brain. By
randomly placing abnormal malignant AT[N] onsets
across brain regions, we record the nodes that reach
HRS (high-risk state) after system stabilization. A
group of 14 nodes is identified as most susceptible to
developing into HRS regardless of the initial abnor-
mal onset and are therefore referred to as vulnerable
regions. As shown in Fig. 6B, 64.3% of vulnerable
nodes located in temporal and occipital lobes and
35.8% of them are among the worst 10% of neu-
rodegenerative regions. Since HRS is assumed to be
associated with high AT[N] profiles, we check the
bar plot of regional AT[N] together with the pre-
dicted risk, sorted by the ascending risk (Fig. 6A).
Concert with previous understanding, many nodes
with higher risks have higher accumulations of amy-
loid, tau, and neurodegeneration. However, the AT[N]
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Fig. 6. Vulnerable regions to AT[N] burden. A) A stacked bar plot of AT[N] SUVR values (y-axis) and predicted risk for 74 parcellated
brain regions in the left hemisphere (x-axis), sorted in ascending order of predicted risk. Vulnerable nodes are highlighted in red rectangles.
B) Brain mapping of vulnerable regions identified by our model. Ball colors indicate different brain lobes. Node IDs are written in white,
referring to region name in (A). C) Heatmaps of average longitudinal changes of AT[N] between last scan and first scan for vulnerable versus
non-vulnerable regions from 320 subjects. All heatmaps are sorted by the predicted risks of non-vulnerable nodes in descending order.

SUVR values of some vulnerable regions (such as
nodes #21, #23, #41) are at a medium level, indicat-
ing that vulnerable regions do not necessarily refer
to regions with the most neuropathological burdens.
We further compare the longitudinal changes (�)
in AT[N] level and predicted risk of proposed vul-
nerable nodes and non-vulnerable nodes (Fig. 6C).
The increments of amyloid and tau in identified vul-
nerable regions ties to non-vulnerable regions, but
vulnerable regions bear significant more neural loss
compared to non-vulnerable regions p = 0.005. The
predicted risk also reflects the same trend, where
vulnerable regions are associated with significantly
higher predicted risk compared to other regions (p =
0.0001). Further comparison of �AT[N] between
vulnerable nodes shows that the overall increase
of neuropathological burdens at vulnerable regions
is higher than regions summarized from literature

[57–64], especially for tau (See Supplementary Fig-
ure 1 for details). Together with the analysis of
predicted risk, our results confirm the susceptibil-
ity of vulnerable nodes and significant increases of
neurodegeneration level in AD development.

Critical regions of AT[N] transmission network

Besides vulnerable regions that are susceptible to
abnormal AT[N] burdens, we are also interested in
regions that act as hubs in integration and potentially
augment metabolic cascades relevant to brain disease.
Considering the diffusive nature of AT biomarkers,
these regions are expected to be transmissible to
disease factors, where subtle increases can quickly
spread out and significantly affect neighboring and
further areas. In this section, we proposed a set of crit-
ical nodes based on our model result in comparison
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Fig. 7. Regional onset of critical brain regions compared with hub nodes and random nodes. A–C) Initial regional onset of randomly
selected nodes, hub nodes, and critical nodes. D–F) Predicted brain regions under high risk using random nodes onset, hub nodes onset,
and critical nodes onset. Blue balls indicate the location of random nodes, hub nodes, and critical nodes; red balls are brain regions affected
and developed to high-risk state; grey lines represent an averaged brain network with its thickness denoting the relative region-to-region
connectivity strength. G–I) Graph-theoretic metrics of degree, PageRank, and closeness centrality (sorted in ascending order) at random
nodes, hub nodes, and critical nodes, respectively.

with the prevailing hub nodes from the intersections
of current research studies [65, 66], in hope of shed-
ding light on precision medicine and early prediction
in AD field.

Regional onset of critical nodes outperforms hub
nodes

We summarized a set of hub nodes obtained from
in silico research on both functional network and
spatial network of AD patients. They have been iden-
tified to serve as gateways for information processing
and communication. Hub nodes cover transentorhinal
entorhinal cortex, posterior cingulate, and fusiform
gyrus, which are two of the ROIs with dense anatom-
ical and functional connections to many other brain
regions. For the selection of critical brain regions,
we increase the AT[N] levels for random groups of
nodes, count the number of brain regions that end
up at HRS after system stabilization, and choose
the set of nodes that convert most brain regions

into HRS. Our Critical Nodes are proposed from
model performance in understanding the regions that
could drive most changes in AT[N] level, which
involve precuneus, superior frontal gyrus, precentral
gyrus, supramarginal gyrus, lateral superior temporal
gyrus, olfactory sulcus, and inferior temporal gyrus.
In both sets, we found inferior temporal gyrus to
be crucial in propagating AD burdens. However, our
model presents us with possible signal centers such
as precentral gyrus and precuneus, which are highly
correlated with early AT depositions and substantial
pathological burdens in the late stage of AD progres-
sion.

Figure 7 presents the comparison between our
proposed critical nodes (Fig. 7C) with hub nodes
(Fig. 7B) from literature [65–67] and a set of ran-
domly selected nodes (Fig. 7A), where hub nodes
and critical nodes coincide in the region of bilat-
eral orbital gyri. We (1) tune the three sets of nodes
(blue nodes in Fig. 7A–C) to abnormal levels, (2) set
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the rest of brain regions to normal AT[N] levels, (3)
run the simulation until the system reaches its stable
state, and (4) evaluate the transmissibility of disease
factors for those nodes by counting the number of
regions that progress to abnormal (AD) stage. Crit-
ical nodes impact and drive as many as 49 nodes to
HRS (Fig. 7F), whereas hub nodes and random nodes
affect 32 nodes (Fig. 7E) and 24 nodes (Fig. 7D),
respectively. The predicted risks of critical nodes are
larger than 0.7 in the left and right inferior temporal
gyrus, left and right superior temporal gyrus, and left
supramarginal gyrus. Our finding is consistent with
the previous study that temporal gyrus, which plays
a major role in object recognition, is one of the cog-
nitive functions that are impaired early on in AD [68,
69].

Further, we investigate the graph-theoretic met-
rics: degree, PageRank, and closeness centrality for
each ROI across all subjects. In Fig. 7G–I, we com-
pare the overall degree (a measure of connectivity
strength), PageRank (an identification of influential
nodes whose influence extends beyond their direct
connections), and closeness centrality (a measure of
how long it will take to spread information sequen-
tially from the current node to all other nodes). We
observe a clear stratification between critical nodes,
hub nodes, and random nodes for degree (Fig. 7G)
and PageRank (Fig. 7H): critical nodes have notably
higher degrees and PageRank compared to hub nodes,
which are both higher random nodes. The majority of
critical nodes have closeness higher than hub nodes
and random nodes. However, there is no distinct pat-
tern between the comparison of closeness from hub
nodes and random nodes. This indicates that the struc-
tural network is an important factor in determining
AD transmission and progression.

Pathway and network influence

To better understand the influential roles of various
pathways in our network-guided model, we examine
the system behaviors under different amyloid and tau
production, clearance, activation, and diffusion rates
(See Materials and methods for detailed descriptions
of mechanistic pathways).

Overproduction and clearance deficiency of
amyloid and tau significantly increase AD risk

Minor abnormities in amyloid and tau usually can
be self-corrected by neurons through different clean-
ing mechanisms such as proteolytic degradation and
out-of-brain transportation via blood-brain barrier [2,

42]. However, AD patients are unable to restrain these
disease factors within the normal range due to their
disrupted production-clearance balance [22, 70]. To
test the clinical impact of this metabolic balance,
we experimentally vary the rate constants of reac-
tive pathways in our system and trace the changes in
predictive risk for CN and AD groups. Despite a cer-
tain degree of overlapping, the predicted risk for the
AD group is noticeably higher than the CN group,
see Fig. 8A–H. We also observe a statistically sig-
nificant difference in predicted risks among varied
production rates and clearance rates of AT (Fig. 8A,
B, E, F). The changes in amyloid and tau produc-
tion rates explain about 4.5% (r2) and 14.3% of the
increase in predicted risk, respectively; the changes
in amyloid and tau clearance rates explain 27.0% and
16.3% of the decrease in predicted risk. These sug-
gest that elevated production rates and suppressed
clearance rates will significantly increase the risk of
AD.

Network diffusion is not a determinant factor in
AD progression

We then check the effect of activation and diffu-
sion for amyloid and tau. A similar stratified risk
level is observed between different clinical labels:
AD groups have the highest risk, followed by MCI
and NC. For the activation pathway, a general ris-
ing pattern of risk is witnessed in both amyloid and
tau as we increase the rate constant (see Fig. 8C,
G). When increasing the activation rate by 50%, the
risks from the three groups overlap, indicating that
hyper-active amyloid and tau may lead to high risk
regardless of subjects’ diagnostic stage. The changes
in amyloid and tau activation rate explain 12.3% and
5.0% of the increase in predicted risk, respectively.
Even though network connectivity is recognized as a
critical factor in AD, it is worth noting that there is
no significant increase (0.006% and 0.0006%) in risk
prediction (Fig. 8D, H). Scaling up the diffusion rate
alone may accelerate the speed of disease progres-
sion but does not change the final disease stage, and
thus is not influential to predicted risk here. Finally,
we check the effect of the resilience rate (Fig. 8I).
Increasing the resilience rate significantly decreases
predicted risks for all clinical labels, and the change
in resilience rate explains 10.3% of the increase in
predicted risk. Our finding, concerting with other pre-
vious statistical studies [25, 46, 47], shows the effects
of education and socioeconomic factors in delaying
AD progression.
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Fig. 8. Influence of amyloid and tau production, clearance, activation, diffusion, and resilience rates. A–I) Predicted risk with varied reaction rate constants. For each plot, bars indicate the 25
and 75 percentiles of predicted risk, and the dashed line connects the mean of predicted risk under different reaction rates. The x-axis represents the relative increase (+) or decrease (–) of rate
constants. +0% is the base reaction rate used in the model. The colors denote the diagnostic labels of each group (CN, AD).
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DISCUSSION

AD is irreversible and slowly progressive demen-
tia with limited treatments. Due to the multiplicity
of clinical symptoms, standard neuropsychologi-
cal assessments inadequately reflect the underlying
pathophysiological mechanisms, rendering a signif-
icant gap between neurobiological examinations of
AD pathology and clinical diagnoses. The in-depth
understanding of how AT[N] biomarkers spread
throughout the brain is a crucial step because dis-
entangling the regions that are vulnerable to disease
factors and the regions that are highly “contagious”
after suffering from abnormal accumulation of those
neuropathological burdens is the gateway for preci-
sion medicine. Based on our previous model [71],
we processed considerable neuroimaging data from
two-fold individual subjects, added in longitudinal
Tau-PET data, and replaced original MRI data with
fluorodeoxyglucose PET for more accurate measure-
ment of neurodegeneration. The baseline and final
scans of Amyloid-, Tau-, and FDG-PET are used as
initial and final indicators of AT[N] biomarker levels
accordingly.

While AT[N] biomarkers are considered patholog-
ical hallmarks of AD, none of them is unique to
AD. What makes the simulation more complex is
that high-level amyloid, tau, and neurodegeneration
accumulations are not limited to AD subjects but
also exist in some normal aging populations. Thus,
measurement of AT[N] level alone is insufficient for
clinical diagnosis and a universal cutoff value for
biomarker abnormality might be inaccurate for clas-
sification. A well-designed model is in demand to
differentiate normal accumulation and pathological
progression. In this study, we employ the proposed
network-guided reaction-diffusion model to analyze
the impact of biomarker interactions and network
diffusion on AD progression. By using Braak stag-
ing as a benchmark, we evaluate the validity of our
model based on its ability to replicate this widely
accepted progression stages of AD pathology based
on the regional distribution of neurofibrillary tan-
gles and neuritic plaques in the brain (Fig. 3). Since
the simulation results are governed by the reaction-
diffusion model, we further evaluate the correlation
between the global attribute of system behaviors (the
percentile of predicted high-risk regions) and cog-
nitive measurements (CDR, ADAS, and MMSE),
which all exhibits significant positive relationships
(p < 10−16), as shown in Fig. 4E. Such a noticeable
association between system behaviors and clinical

outcomes shows the potential of our model in dis-
entangling the heterogeneity of neurodegeneration
trajectories.

While our model results are accurate on a gen-
eral view, over- or under-estimations do occur with
high and low regional AT burdens. Certain nodes with
higher regional amyloid and tau deposition tend to
have low neurodegeneration which leads to an over-
estimation by our model. The spatial concurrence of
AT[N] biomarkers could explain this prediction error
as abnormal amyloid and tau deposition is associ-
ated with and can accelerate neurodegeneration [9,
54, 55]. This urges the need to include more lon-
gitudinal AT[N] biomarkers in model construction
as they provide more comprehensive information
on the underlying microscale disease progression.
Notice that the simplification of our model might
also contribute to this estimation error. Our current
model does not account for the “incubation time”
from the build-up of amyloid to the onset of tau
pathology, either to the onset of neurodegeneration or
clinical dementia. To investigate the transition time
from the build-up of amyloid to the onset of tau
pathology and neurodegeneration, we first categorize
the longitudinal biomarkers’ burden for each subject
by using receiver operating characteristic based on
the optimal cutoffs that classify subjects’ longitudi-
nal scans as normal (–) or abnormal (+). Provided
with the categorized profiles, we then apply logis-
tic regression to model the longitudinal trajectories
of AT[N] biomarker transitions. By doing this, we
found that the average time lapse from (A–−→A+)
to ([N]–−→[N]+) transitions could be as long as 18
months [54]. The inclusion of temporal latency in
future modeling could potentially improve the overall
accuracy of AT[N] biomarker evolution.

Extensive research has proven the detrimen-
tal effects of mitochondria functionality, oxidative
stress, long-term potentiation, synaptic plasticity, and
memory caused by the irregularity of amyloid-�
[1, 2]. Yet these potential disease factors can be
maintained at a normal level through different clear-
ance mechanisms, including proteolytic degradation,
out-of-brain transportation via blood-brain barrier,
immune responses, and protein-mediation [2, 22, 72].
If the metabolic balance is interrupted, either through
overproduction or clearance deficiency, a chain of
downstream consequences will be triggered, and
eventually leads to AD. This conclusion is backed by
our model results with tuned parameters of amyloid
and tau. Increasing the production rate or decreas-
ing the clearance rate can cause a notable rise in
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predicted risk. When reducing the clearance rates
of amyloid or tau by 20%, all regions surge in the
high-risk range regardless of clinical diagnostic label,
indicating that the interrupted metabolic balance may
be a key to the initiation and progression of AD [70,
73, 74]. Our model also indicates that the increased
level of resilience shows effectiveness in delaying or
preventing AD progression. In the current literature
on cognitive reserve, there is converging evidence of
the existence of resilience against the development
of neuropathologies, which is highly dependent on
the lifestyle factors such as education and occupation
[25].

Recent research shows the critical role of brain net-
work during the evolution of AD. Several laboratory
studies showed that hyperphosphorylated tau would
spread along with structural brain networks, leading
to neuron loss [11, 48]. Our study, however, reveals
that the final predicted risk will not be affected if we
increase the diffusion rate alone. While it could be
partially explained by the measurement error during
neuroimaging acquisition and data processing, the
static brain network could play a significant role here.
In our model, we used the average network connec-
tivity of CN and AD groups to simulate individuals’
AT[N] dynamics. Since the neurodegenerative pro-
cess could alter the network topology [27], network
alteration might likely manifest a dynamic propa-
gation of pathological burdens. We can incorporate
subject-specific longitudinal brain networks in the
study to further examine the influence of network
alternation in disease progression.

With an extensive search via randomly seeding
amyloid and tau disease factors, we found the tempo-
ral lobe, especially the middle and inferior temporal
gyrus, suffers great vulnerability to abnormal AT dis-
position. Unlike traditional studies, our work shows
that the brain regions that are affected most by abnor-
mal AT[N] burdens are not constrained to regions
with high amyloid or tau depositions. Some regions,
such as the dorsolateral prefrontal cortex and - visual
association cortex, bearing average AT burdens, are
at high risk to neuropathological alternation caused
by AD, encouraging more attention to those regions
for clinical diagnosis and treatment. Besides vulner-
ability, our model also reveals that bilateral inferior
temporal gyrus, bilateral superior temporal gyrus,
precuneus, and superior frontal gyrus are excep-
tionally transmissible to AT[N] burdens during AD
progression. The criticality of those brain regions
provides insights into a new interpretation of neu-
roimaging data in diagnosis and advocates early

treatments on those particular sites to delay or prevent
potential future whole-brain AD development.

Our analyses on empirical data reveal a concur-
rent progression of T[N] biomarkers and a strong
indicative power of T[N] profiles in AD prediction.
Based on the proposed systems biology model, we
proved the importance of maintaining the metabolic
balance of amyloid and tau in AD prevention and tar-
geting temporal lobe in clinical intervention. More
importantly, our findings of vulnerable regions that
are severely affected by, and critical regions that
are highly contagious to AT[N] profiles would shed
light on early AD prediction and precision medicine.
Future work considering delayed pathways and net-
work alteration may further improve our model
framework and accuracy.
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